Fixed Point Binary

In denary we represent number, or parts of numbers, that are less than one like this:

100	10	1	.	$1 / 10$	$1 / 100$	$1 / 1000$
3	6	9	.	7	5	2

In binary, we use the same tactic:

8	4	2	1	.	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$
1	0	1	0	.	1	1	0	0
			10	.	$75(10)$			

Converting fixed point binary to denary

Convert the integer part as normal, then add the fractions together:

$0.1_{(2)}$	$=$	$1 / 2$	$=$	$0.5_{(10)}$
$0.01_{(2)}$	$=$	$1 / 4$	$=$	$0.25_{(10)}$
$0.001_{(2)}$	$=$	$1 / 8$	$=$	$0.125_{(10)}$
$0.0001_{(2)}$	$=$	$1 / 16$	$=$	$0.0625_{(10)}$

Converting denary to fixed point binary

Convert the integer part as normal, then remove the fractions:
E.G. 11.6875 [$=1010.1011]$

Integer part $=1010_{(2)}$
Remove 0.5 from the fractional part $=1010.1_{(2)} \quad$ Remaining: $0.1875_{(10)}$
Can't remove 0.25 from the fractional part $=1010.10_{(2)} \quad$ Remaining: $0.1875_{(10)}$
Remove 0.125 from the fractional part $=1010.101_{(2)} \quad$ Remaining: $0.0625_{(10)}$
Remove 0.0625 from the fractional part $=1010.1011_{(2)} \quad$ Remaining: $0_{(10)}$

Binary Multiplication

Binary multiplication uses the following rules (obvious when you think about it):

$$
\begin{aligned}
& 0 \times 0=0 \\
& 0 \times 1=0 \\
& 1 \times 0=0 \\
& 1 \times 1=1
\end{aligned}
$$

E.G. $1-1100 \times 0010[=11000]$

	1100
	$\underline{0010} \mathrm{x}$
Multiply by the right hand number:	0000
Multiply by the next number:	1100
Multiply by the next number:	0000
Multiply by the next number:	0000

11000
We can effectively ignore any 0 s in the bottom number.
E.G 2-0010 1010×00010010 [= 110100100]

00101010
00010010 x
00101010
00101010
110100100

