
AQA AS Computing Representing Data 2

Fixed Point Binary

In denary we represent number, or parts of numbers, that are less than one like this:

100 10 1 . 1/10 1/100 1/1000

 3 6 9 . 7 5 2

In binary, we use the same tactic:

 8 4 2 1 . ½ ¼ 1/8 1/16

 1 0 1 0 . 1 1 0 0

 10 . 75 (10)

Converting fixed point binary to denary

Convert the integer part as normal, then add the fractions together:

0.1(2) = ½ = 0.5(10)
0.01(2) = ¼ = 0.25(10)
0.001(2) = 1/8 = 0.125(10)
0.0001(2) = 1/16 = 0.0625(10)

Converting denary to fixed point binary

Convert the integer part as normal, then remove the fractions:

E.G. 11.6875 [= 1010.1011]

Integer part = 1010(2)
Remove 0.5 from the fractional part = 1010.1(2) Remaining: 0.1875(10)
Can’t remove 0.25 from the fractional part = 1010.10(2) Remaining: 0.1875(10)
Remove 0.125 from the fractional part = 1010.101(2) Remaining: 0.0625(10)
Remove 0.0625 from the fractional part = 1010.1011(2) Remaining: 0(10)

AQA AS Computing Representing Data 2

Binary Multiplication

Binary multiplication uses the following rules (obvious when you think about it):

0 x 0 = 0
0 x 1 = 0
1 x 0 = 0
1 x 1 = 1

E.G. 1 – 1100 x 0010 [= 11000]

1 1 0 0
0 0 1 0 x

Multiply by the right hand number: 0 0 0 0
Multiply by the next number: 1 1 0 0
Multiply by the next number: 0 0 0 0
Multiply by the next number: 0 0 0 0 0

 1 1 0 0 0

We can effectively ignore any 0s in the bottom number.

E.G 2 – 0010 1010 x 0001 0010 [= 1 1010 0100]

 0 0 1 0 1 0 1 0
 0 0 0 1 0 0 1 0 x

 0 0 1 0 1 0 1 0
 0 0 1 0 1 0 1 0 0 +

 1 1 0 1 0 0 1 0 0

