Fixed Point Binary

In denary we represent number, or parts of numbers, that are less than one like this:

100	10	1	1/10	1/100	1/1000
3	6	9	7	5	2

In binary, we use the same tactic:

8	4	2	1	1/2	1⁄4	¹ / ₈	¹ / ₁₆
1	0	1	0	1	1	0	0
			10	75 ₍₁	0)		

Converting fixed point binary to denary

Convert the integer part as normal, then add the fractions together:

$0.1_{(2)}$	=	1/2	=	$0.5_{(10)}$
0.01(2)	=	1/4	=	$0.25_{(10)}$
$0.001_{(2)}$	=	$^{1}/_{8}$	=	$0.125_{(10)}$
$0.0001_{(2)}$	=	$^{1}/_{16}$	=	$0.0625_{(10)}$

Converting denary to fixed point binary

Convert the integer part as normal, then remove the fractions:

E.G. 11.6875 [= 1010.1011]

Integer part = $1010_{(2)}$ Remove 0.5 from the fractional part = $1010.1_{(2)}$ Remaining: $0.1875_{(10)}$ Can't remove 0.25 from the fractional part = $1010.10_{(2)}$ Remaining: $0.1875_{(10)}$ Remove 0.125 from the fractional part = $1010.101_{(2)}$ Remaining: $0.0625_{(10)}$ Remove 0.0625 from the fractional part = $1010.101_{(2)}$ Remaining: $0.0625_{(10)}$

Binary Multiplication

Binary multiplication uses the following rules (obvious when you think about it):

0 x 0 = 00 x 1 = 01 x 0 = 01 x 1 = 1

E.G. 1 – 1100 x 0010 [= 11000]

	$1\ 1\ 0\ 0$
	<u>0010</u> x
Multiply by the right hand number:	0000
Multiply by the next number:	1 1 0 0
Multiply by the next number:	0000
Multiply by the next number:	0000

 $1\ 1\ 0\ 0\ 0$

We can effectively ignore any 0s in the bottom number.

E.G 2 – 0010 1010 x 0001 0010 [= 1 1010 0100]

 $\begin{array}{c} 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \\ \underline{0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0} \\ x \end{array} \\ \end{array} \\$

 $\begin{array}{c} 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \\ \underline{0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ } \\ \end{array} \begin{array}{c} + \end{array} \\$

 $1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$